
1

2© 2020 The MathWorks, Inc.

MATLAB HPC Mentors
June 25, 2020

Host: Nicholas Ide

Guest Speakers: Ben Tordoff & Oli Tissot, Parallel Computing Development

3

Quick Updates

▪ No meeting in July or August – enjoy the summer, stay healthy!

▪ If you have issues with recent SSH and MATLAB Parallel Server, let me know.

– Have been a few reports

– Members of the community have found temporary solutions

4

Distributed Arrays:

techniques and best practices for handling very large calculations

Ben Tordoff & Oli Tissot,

Parallel Computing Development

x

count(xp)

sum(xp)

count(xp)

sum(xp)

count(xp)

sum(xp)

S

S

÷ mean(x)

5

• What are distributed arrays?

• What can you do with distributed arrays?

• Building a distributed array

• Advanced manoeuvres

• Debugging methods and tips

Agenda

6

Normal array – calculation happens in main memory:

Remote arrays in MATLAB

Rule: take the calculation to where the data is

x = rand(...)

x_norm = (x – mean(x)) ./ std(x)

7

Remote arrays in MATLAB

gpuArray – all calculation happens on the GPU:

x = gpuArray(...)

x_norm = (x – mean(x)) ./ std(x)

Rule: take the calculation to where the data is

distributed – calculation is spread across the memory of a cluster:

x = distributed(...)

x_norm = (x – mean(x)) ./ std(x)

tall – calculation is performed by stepping through files:

x = tall(...)

x_norm = (x – mean(x)) ./ std(x)

8

Cluster of

Machines

Memory

▪ If it won’t fit on one machine, maybe it can be

split across the combined memory of a cluster
of machines? Use distributed arrays

When should I reach for distributed?

▪ If your data fits in memory, just use MATLAB

normally
Single

Machine

Memory

▪ If it won’t fit in the combined memory of a
cluster of machines then use tall arrays

9

Using distributed arrays

▪ Use the memory of multiple machines as though it was your own

▪ Client sees a “normal” MATLAB variable

▪ Work happens on cluster

11 26 41

12 27 42

13 28 43

15 30 45

16 31 46

17 32 47

20 35 50

21 36 51

22 37 52

MATLAB Parallel Server

MATLAB

Parallel Computing Toolbox

>> d = distributed(…);

10

Distributed Algorithms

>> m = mean(d);

x

count(xp)

sum(xp)

count(xp)

sum(xp)

count(xp)

sum(xp)

S

S

÷ mean(x)

11

• What are distributed arrays?

• What can you do with distributed arrays?

• Building a distributed array

• Advanced manoeuvres

• Debugging methods and tips

Agenda

12

What can you do with distributed arrays?
Distributed array functions

▪ Extensive support:

– Includes most linear algebra

– Scale up mathematical operations

Run MATLAB functions with distributed arrays

https://www.mathworks.com/help/parallel-computing/run-matlab-functions-with-distributed-arrays.html

13

What can you do with distributed arrays?

▪ >500 functions supported (as of R2020a)

▪ support for dense and sparse linear algebra

▪ support for numerics (double, single, logical, etc.)

▪ support for datetimes, durations, categoricals, tables, …

▪ focus is on data preparation and large system solve

https://www.mathworks.com/help/matlab/referencelist.html?type=function&capability=distributedarrays

14

What can you do with distributed arrays?

Code written for distributed arrays looks like normal MATLAB code

% Create / read distributed data

A = distributed(...)

% Same code as for in-memory

b = sum(A,2);

x1 = A\b; % direct solution

x2 = pcg(A, b); % iterative solution

% Bring back from cluster

[x1,x2] = gather(x1, x2);

15

Processing quite big data
Multiplication of 2 NxN matrices

N

Execution time (seconds)

1 node,

16 workers

2 nodes,

32 workers

4 nodes,

64 workers

8000 19 13 11

16000 120 75 50

20000 225 132 86

25000 - 243 154

30000 - 406 248

35000 - - 376

45000 - - 743

50000 - - -

Processor: Intel Xeon E5-class v2

16 cores, 60 GB RAM per compute node, 10 Gb Ethernet

>> C = A * B

16

• What are distributed arrays?

• What can you do with distributed arrays?

• Building a distributed array

• Advanced manoeuvres

• Debugging methods and tips

Agenda

17

Building a distributed array

There are four main ways to build a distributed array:

1. Create from in-memory data

2. Build functions

3. Read from datastore

4. Construct from local parts

18

Building a distributed array: from in-memory

>> x = gallery("poisson",10000);

>> dx = distributed(x); % Data sent to workers

▪ All data is sent from client to workers

▪ Useful for debugging before scaling up

▪ Useful for data that is close to filling local memory (i.e. can be

created but not operated on due to fill-in etc.)

19

Building a distributed array: build functions

>> dx = distributed.ones(1e9,100);

>> dx = distributed.rand(1e9,100);

>> dx = distributed.speye(1e9);

>> dx = distributed.sprand(1e9,1e9,1e-8);

... etc.

▪ No data is sent from client to workers

▪ Useful for creating test data and examples

20

Building a distributed array: build from datastore

>> ds = datastore("data/*.csv")

>> preview(ds)

Rows Cols Vals

_____ ____ ____

1 1 4

2 1 -1

10001 1 -1

: : :

: : :

Datastore:

• Simple interface for data in multiple

files/folders

• Presents data a piece at a time

• Access pieces in serial (desktop) or in

parallel (cluster)

• Back-ends for tabular text, images,

databases and more​

• Data always stacked vertically

21

Building a distributed array: build from datastore

Read datastore into distributed

▪ each worker reads its own part of the data

▪ data is distributed vertically (workers have blocks of rows)

>> dt = distributed(ds); % distributed table of [Rows, Cols, Vals]

>> d = sparse(dt.Rows, dt.Cols, dt.Vals);

>> size(d)

ans = 100000000 100000000

>> nnz(d)

ans = 499960000

22

• What are distributed arrays?

• What can you do with distributed arrays?

• Building a distributed array

• Advanced manoeuvres

• Debugging methods and tips

Agenda

23

Writing your own algorithms

SPMD let’s you craft parallel algorithms:

▪ Inside SPMD distributed -> codistributed

▪ getLocalPart extracts the data for this worker

▪ Use gop to reduce across workers (binary tree)

▪ Use gcat to concatenate results across workers

>> d = distributed(...)

>> spmd

S = sum(getLocalPart(d)),"all"); % Sum values on this worker

totalSum = gop(@plus, S); % Add results across all workers

end

24

Writing your own algorithms

SPMD let’s you craft parallel algorithms:

▪ MPI-like labSend, labReceive, labSendReceive for low level communication

▪ labindex for working out which worker you are

>> d = distributed(...)

>> spmd

mydata = getLocalPart(d);

% Cycle data to the right (wrapping round on last worker)

prevWorker = mod(labindex-2, numlabs)+1; % worker to the left

nextWorker = mod(labindex, numlabs)+1; % worker to the right

mydata = labSendReceive(nextWorker, prevWorker, mydata)

end

25

Modifying the data distribution

SPMD also gives control over distribution:

▪ redistribute for changing the distribution of an existing array

▪ codistributorXX for creating new (co)distributed arrays

>> d = distributed.ones(1e5); % Default is 1D distribution in dim 2

>> spmd

% Switch to having whole rows per worker

d2 = redistribute(d, codistributor1d(1));

% Use a custom (uneven) distribution of the data

partition = 1e4 * [1 2 3 4];

d3 = redistribute(d, codistributor1d(1, partition));

% Switch to block-cyclic

d4 = redistribute(d, codistributor2dbc());

end

26

• What are distributed arrays?

• What can you do with distributed arrays?

• Building a distributed array

• Advanced manoeuvres

• Debugging methods and tips

Agenda

27

Debugging

Some rules of thumb:

▪ Start with “local” pool and small data

– faster iteration time

– proves correctness

▪ Use pre-built algorithms if you can

▪ If writing your own, prefer higher-level gop, gcat over labSend/Receive

– It’s easy to create mismatched communications with labSend/Receive!

– Using unique tags for each communication helps to spot stray messages

– Keeping computation and communication code separate helps in debugging both

▪ Run for a few different sizes to understand how duration scales with size

▪ Think about where your data lives – minimize transmission of files across

networks

28

Debugging

Use parallel profiler (mpiprofiler):

▪ Shows what code ran, how much data transferred and allows comparison between workers

(spot uneven loading)

>> mpiprofiler on

>> % Lots of parallel code ...

>> mpiprofview

29

Debugging

Use spmd or parfevalonall to interact with workers and see local state

>> spmd, d, end

Lab 1: This worker stores d(:,1:1667).

LocalPart: [10000x1667 double]

Codistributor: [1x1 codistributor1d]

Lab 2: This worker stores d(:,1668:3334).

LocalPart: [10000x1667 double]

Codistributor: [1x1 codistributor1d]

Lab 3:

etc.

30

Questions

