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Quick Updates

▪ No meeting in July or August – enjoy the summer, stay healthy!

▪ If you have issues with recent SSH and MATLAB Parallel Server, let me know.

– Have been a few reports

– Members of the community have found temporary solutions 
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Distributed Arrays: 

techniques and best practices for handling very large calculations 

Ben Tordoff & Oli Tissot, 

Parallel Computing Development
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• What are distributed arrays?

• What can you do with distributed arrays?

• Building a distributed array

• Advanced manoeuvres

• Debugging methods and tips

Agenda
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Normal array – calculation happens in main memory:

Remote arrays in MATLAB

Rule: take the calculation to where the data is

x = rand(...)

x_norm = (x – mean(x)) ./ std(x)
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Remote arrays in MATLAB

gpuArray – all calculation happens on the GPU:

x = gpuArray(...)

x_norm = (x – mean(x)) ./ std(x)

Rule: take the calculation to where the data is

distributed – calculation is spread across the memory of a cluster:

x = distributed(...)

x_norm = (x – mean(x)) ./ std(x)

tall – calculation is performed by stepping through files:

x = tall(...)

x_norm = (x – mean(x)) ./ std(x)
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Cluster of

Machines

Memory

▪ If it won’t fit on one machine, maybe it can be 

split across the combined memory of a cluster 
of machines? Use distributed arrays

When should I reach for distributed?

▪ If your data fits in memory, just use MATLAB 

normally
Single

Machine

Memory

▪ If it won’t fit in the combined memory of a 
cluster of machines then use tall arrays



9

Using distributed arrays

▪ Use the memory of multiple machines as though it was your own

▪ Client sees a “normal” MATLAB variable

▪ Work happens on cluster
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MATLAB Parallel Server

MATLAB

Parallel Computing Toolbox

>> d = distributed(…);
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Distributed Algorithms

>> m = mean(d);
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• What are distributed arrays?

• What can you do with distributed arrays?

• Building a distributed array

• Advanced manoeuvres

• Debugging methods and tips
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What can you do with distributed arrays?
Distributed array functions

▪ Extensive support:

– Includes most linear algebra

– Scale up mathematical operations

Run MATLAB functions with distributed arrays

https://www.mathworks.com/help/parallel-computing/run-matlab-functions-with-distributed-arrays.html
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What can you do with distributed arrays?

▪ >500 functions supported (as of R2020a)

▪ support for dense and sparse linear algebra

▪ support for numerics (double, single, logical, etc.)

▪ support for datetimes, durations, categoricals, tables, …

▪ focus is on data preparation and large system solve

https://www.mathworks.com/help/matlab/referencelist.html?type=function&capability=distributedarrays
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What can you do with distributed arrays?

Code written for distributed arrays looks like normal MATLAB code

% Create / read distributed data

A = distributed(...)

% Same code as for in-memory

b = sum(A,2);

x1 = A\b; % direct solution

x2 = pcg(A, b); % iterative solution

% Bring back from cluster

[x1,x2] = gather(x1, x2);
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Processing quite big data
Multiplication of 2 NxN matrices

N

Execution time (seconds)

1 node,

16 workers

2 nodes,

32 workers

4 nodes,

64 workers

8000 19 13 11

16000 120 75 50

20000 225 132 86

25000 - 243 154

30000 - 406 248

35000 - - 376

45000 - - 743

50000 - - -

Processor: Intel Xeon E5-class v2

16 cores, 60 GB RAM per compute node, 10 Gb Ethernet

>> C = A * B
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• What are distributed arrays?

• What can you do with distributed arrays?

• Building a distributed array

• Advanced manoeuvres

• Debugging methods and tips

Agenda
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Building a distributed array

There are four main ways to build a distributed array:

1. Create from in-memory data

2. Build functions

3. Read from datastore

4. Construct from local parts
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Building a distributed array: from in-memory

>> x = gallery("poisson",10000);

>> dx = distributed(x); % Data sent to workers

▪ All data is sent from client to workers

▪ Useful for debugging before scaling up

▪ Useful for data that is close to filling local memory (i.e. can be 

created but not operated on due to fill-in etc.)
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Building a distributed array: build functions

>> dx = distributed.ones(1e9,100);

>> dx = distributed.rand(1e9,100);

>> dx = distributed.speye(1e9);

>> dx = distributed.sprand(1e9,1e9,1e-8);

... etc.

▪ No data is sent from client to workers

▪ Useful for creating test data and examples
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Building a distributed array: build from datastore

>> ds = datastore("data/*.csv")

>> preview(ds)

Rows     Cols    Vals

_____    ____    ____

1     1        4 

2     1       -1 

10001     1       -1

:     :        : 

:     :        :

Datastore:

• Simple interface for data in multiple 

files/folders

• Presents data a piece at a time

• Access pieces in serial (desktop) or in 

parallel (cluster)

• Back-ends for tabular text, images, 

databases and more​

• Data always stacked vertically
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Building a distributed array: build from datastore

Read datastore into distributed

▪ each worker reads its own part of the data

▪ data is distributed vertically (workers have blocks of rows)

>> dt = distributed(ds); % distributed table of [Rows, Cols, Vals]

>> d = sparse(dt.Rows, dt.Cols, dt.Vals);

>> size(d)

ans = 100000000  100000000

>> nnz(d)

ans = 499960000
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• Debugging methods and tips
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Writing your own algorithms

SPMD let’s you craft parallel algorithms:

▪ Inside SPMD distributed -> codistributed

▪ getLocalPart extracts the data for this worker

▪ Use gop to reduce across workers (binary tree)

▪ Use gcat to concatenate results across workers

>> d = distributed(...)

>> spmd

S = sum(getLocalPart(d)),"all"); % Sum values on this worker

totalSum = gop(@plus, S); % Add results across all workers

end
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Writing your own algorithms

SPMD let’s you craft parallel algorithms:

▪ MPI-like labSend, labReceive, labSendReceive for low level communication

▪ labindex for working out which worker you are

>> d = distributed(...)

>> spmd

mydata = getLocalPart(d);

% Cycle data to the right (wrapping round on last worker)

prevWorker = mod(labindex-2, numlabs)+1; % worker to the left

nextWorker = mod(labindex, numlabs)+1; % worker to the right

mydata = labSendReceive(nextWorker, prevWorker, mydata)

end
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Modifying the data distribution

SPMD also gives control over distribution:

▪ redistribute for changing the distribution of an existing array

▪ codistributorXX for creating new (co)distributed arrays

>> d = distributed.ones(1e5); % Default is 1D distribution in dim 2

>> spmd

% Switch to having whole rows per worker

d2 = redistribute(d, codistributor1d(1));

% Use a custom (uneven) distribution of the data

partition = 1e4 * [1 2 3 4];

d3 = redistribute(d, codistributor1d(1, partition));

% Switch to block-cyclic

d4 = redistribute(d, codistributor2dbc());

end



26

• What are distributed arrays?

• What can you do with distributed arrays?

• Building a distributed array

• Advanced manoeuvres

• Debugging methods and tips

Agenda



27

Debugging

Some rules of thumb:

▪ Start with “local” pool and small data

– faster iteration time

– proves correctness

▪ Use pre-built algorithms if you can

▪ If writing your own, prefer higher-level gop, gcat over labSend/Receive

– It’s easy to create mismatched communications with labSend/Receive!

– Using unique tags for each communication helps to spot stray messages

– Keeping computation and communication code separate helps in debugging both

▪ Run for a few different sizes to understand how duration scales with size

▪ Think about where your data lives – minimize transmission of files across 

networks
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Debugging

Use parallel profiler (mpiprofiler):

▪ Shows what code ran, how much data transferred and allows comparison between workers 

(spot uneven loading)

>> mpiprofiler on

>> % Lots of parallel code ...

>> mpiprofview
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Debugging

Use spmd or parfevalonall to interact with workers and see local state

>> spmd, d, end

Lab 1: This worker stores d(:,1:1667).

LocalPart: [10000x1667 double]

Codistributor: [1x1 codistributor1d]

Lab 2: This worker stores d(:,1668:3334).

LocalPart: [10000x1667 double]

Codistributor: [1x1 codistributor1d]

Lab 3:

etc.
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Questions


