LAB INSTRUCTIONS
 SHELL SCRIPTING
PURPOSES:

· To understand the basic structure and syntax of a UNIX/LINUX Bourne shell script
· To learn how to run a shell script on our research computing facility, the Emerald Linux cluster
· To practice basic shell programming tools under the Bourne shell.
Following 11 short sh/ksh/Bourne shell scripts, 1.sh-11.sh, plus one MPI code in C programming language, cpi.c, are saved at

/netscr/training/shell/
(i) Copy them over to your working directory at /netscr, (ii) try to understand each of them, and then (iii) run them one by one by just typing the name of a shell script such as “./1.sh” at the prompt. These scripts are:

1. The simplest shell script – Echo command

2. Summation of two integers – If block

3. Summation of two real numbers – bc (basic calculator) command
4. Script to find out the biggest number in 3 numbers – If –elif block
5. Operation (summation, subtraction, multiplication and division) of two numbers – Switch

6. Script to reverse a given number – While block

7. A more complicated greeting shell script

8. Sort the given five numbers in ascending order (using array) – Do loop and array
9. Calculating average of given numbers on command line arguments – Do loop
10. Calculating factorial of a given number – While block
11. An application in research computing – Combining all above
A. HOW TO LOGIN TO EMERALD CLUSTER
1. If you have not done so yet, subscribe the UNC Research Computing services. If you’ve already done this step, go to Step 2.

Go to http://onyen.unc.edu
Scroll down and click the “Subscribe to services” buttom (2nd in the “Other Services” section). Login with your ONYEN and password. Choose from the following services:

· Altix Cluster services (cedar/cypress.isis.unc.edu)

· Emerald Cluster access (emerald.isis.unc.edu)

· Mass storage, etc.

2. UNIX shell and How to Change your Shell

A UNIX shell is a kernel working environment. There are many UNIX shells in common use, such as bash, ksh, csh, and tcsh. Many scientific applications in AFS package space such as GaussView, Cerius2, SYBYL, Cambridge Database, etc., work only in the C shell environment, which is either csh or tcsh.

To know which shell you are currently use, type at the prompt on any of the servers

echo $SHELL

The default shell from the ONYEN website is ksh. To change to csh/tcsh, go to the ONYEN website, select the 3rd button, “Change name or shell”, login and then follow the instructions.

3. Access Emerald Server via SecureCRT
Start->Program-> Remote Services -> SecureCRT -> File -> Quick Connect -> Hostname: emerald.isis.unc.edu -> Connect -> Input your username & password.

4. If you have not done it yet, create your own working directory on /netscr/YourOnyen where “YourOnyen” is your own ONYEN ID. Otherwise, go to the next step.

mkdir /netscr/yourONYEN

DO NOT make other directories at the top /netscr level.

5. Copy hands-on exercise shell scripts and codes from /netscr/training/shell to your own scratch directory:
cp /netscr/training/shell/* /netscr/yourONYEN
B. 11 BOURNE SHELL SCRIPTS

1. The simplest, Hello script!
#!/bin/sh

echo "Hello, $LOGNAME!"

echo "Current date is `date`"

echo "User is `whoami`"

echo "Current directory `pwd`"

2. Summation of two integers
#!/bin/sh

if [$# -ne 2]

then

 echo "Usage - $0 x y"

 echo "Where x and y are two integers for which I will print sum"

 exit 1

fi

sum=`expr $1 + $2 `

echo "Sum of $1 and $2 is $sum "

3. Summation of two real numbers

#!/bin/sh
a=5.66

b=8.67

c=`echo $a + $b | bc`

echo "$a + $b = $c"

4. Script to find out the biggest number in 3 integers

#!/bin/sh

if [$# -ne 3]

then

echo "$0: number1 number2 number3 are not given" >&2

 exit 1

fi

n1=$1

n2=$2

n3=$3

if [$n1 -gt $n2] && [$n1 -gt $n3]

then

echo "$n1 is Bigest number"

elif [$n2 -gt $n1] && [$n2 -gt $n3]

then

echo "$n2 is Bigest number"

elif [$n3 -gt $n1] && [$n3 -gt $n2]

then

 echo "$n3 is Bigest number"

elif [$1 -eq $2] && [$1 -eq $3] && [$2 -eq $3]

then

echo "All the three numbers are equal"

else

echo "I can not figure out which number is biger"

fi

5. Operation (summation, subtraction, multiplication and division) of two integers
#!/bin/sh

if test $# = 3

then

case $2 in

 +) let z=$1+$3;;

 -) let z=$1-$3;;

 /) let z=$1/$3;;

 x|X) let z=$1*$3;;

 *) echo Warning - $2 invalid operator, only +,-,x,/ operator allowed

 exit;;

esac

echo Answer is $z

else

echo "Usage - $0 value1 operator value2"

echo " Where, value1 and value2 are numeric values"

echo " operator can be +,-,/,x (For Multiplication)"

fi

6. Script to reverse a given positive integer
#!/bin/sh

if [$# -ne 1]

then

 echo "Usage: $0 number"

 echo " I will find reverse of given positive integer"

 echo " For eg. $0 123, I will print 321"

 exit 1

fi

n=$1

rev=0; sd=0

while [$n -gt 0]

do

 sd=`expr $n % 10`

 rev=`expr $rev * 10 + $sd`

 n=`expr $n / 10`

done
echo "Reverse number is $rev"

7. A more complicated greeting shell script
#!/bin/sh

temph=`date | cut -c12-13`

dat=`date +"%A %d in %B of %Y (%r)"`

if [$temph -lt 12]

then

 mess="Good Morning $LOGNAME, Have nice day!"

fi

if [$temph -gt 12 -a $temph -le 16]

then

 mess="Good Afternoon $LOGNAME"

fi

if [$temph -gt 16 -a $temph -le 18]

then

 mess="Good Evening $LOGNAME"

fi

echo -e "$mess\nThis is $dat"

8. Sort the given five integer numbers in ascending order (using array)

#!/bin/sh

Declare the array of 5 subscripts to hold 5 numbers

nos=(4 -1 2 66 10)

Prints the number before sorting

echo "Original Numbers in array:"

for ((i = 0; i <= 4; i++))

do

 echo ${nos[$i]}

done

Now do the Sorting of numbers

for ((i = 0; i <= 4 ; i++))

do

 for ((j = $i; j <= 4; j++))

 do

 if [${nos[$i]} -gt ${nos[$j]}]; then

 t=${nos[$i]}

 nos[$i]=${nos[$j]}

 nos[$j]=$t

 fi

 done

done

Print the sorted number

echo -e "\nSorted Numbers in Ascending Order:"

for ((i=0; i <= 4; i++))

do

 echo ${nos[$i]}

done

9. Calculating average of given integer numbers on command line arguments
#!/bin/sh

avg=0

temp_total=0

number_of_args=$#

First see the sufficent cmd args

if [$# -lt 2] ; then

 echo -e "Oops! I need atleast 2 command line args\n"

 echo -e "Syntax: $0: number1 number2 ... numberN\n"

 echo -e "Example:$0 5 4\n\t$0 56 66 34"

 exit 1

fi

now calculate the average of numbers given on command line as cmd args

for i in $*

do

 # addition of all the numbers on cmd args

 temp_total=`expr $temp_total + $i `

done

avg=`expr $temp_total / $number_of_args `
echo "Average of all number is $avg"

10. Calculating factorial of a given integer number
#!/bin/sh

n=0; on=0

fact=1

echo -n "Enter number to find factorial : "

read n

on=$n

while [$n -ge 1]

do

 fact=`expr $fact * $n`

 n=`expr $n - 1`

done

echo "Factorial for $on is $fact"

11. A research computing application: compile an MPI code, cpi.c, submit to the week queue requesting 4 CPUs, monitor the job, and then import the results after the job is finished.
#!/bin/sh

#Step 1: compile the cpi.c MPI code

/afs/iss/pkg/ipm/bin/ipm add intel_fortran intel_CC mpich>&/dev/null

/afs/isis/pkg/mpich/intel/bin/mpicc -o cpi.x cpi.c

echo "Step 1: Code compilation done"

#Step 2: submit the job to week queue using LSF

if [-e output]

then

 /bin/rm ./output

 /bin/touch ./output

fi

bsub -q week -o ./output -n 4 -R "span[ptile=4]" -a mpichp4 mpirun.lsf\ ./cpi.x >&/dev/null

sleep 5 # wait for 5 seconds

echo "Step 2: Job submission done"

#Step 3: Job monitoring

a=`bjobs |grep week | wc -l | awk '{print $1}'`

while ["$a" -ne 0]

do

 echo "Step 3: The job is still running...."

 sleep 5 # the job is not done yet, wait for 5 seconds

 a=`bjobs |grep week | wc -l | awk '{print $1}' `

done

#Step 4: Export the output

while [-z ./output]
do
 sleep 5
 # wait for 5 seconds to let LSF write the output
done
echo "Step 4: The job is done and here is the output:"

sed -n '30,37p' ./output
6
5

